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Abstract: Data-driven soft sensor technology is essential for modern industrial processes. However, 
traditional soft sensor techniques usually assume that the data is in a single mode. Due to the switching 
of working conditions, industrial data often presents multimodal characteristics, which cannot be 
covered by the single model method. In this work, a multimodal partial least squares method based 
on manifold learning is proposed to measure industrial processes' key variables. First, considering 
that process variables' dimension is higher, and the complex process data is distributed in a manifold 
space, the original information is reduced to a smaller size by t-distributed stochastic neighbor 
embedding (t-SNE). Then the data belonging to different modes are clustered. Finally, in each mode, 
the partial least squares model is established to obtain measured variables' values. A real industrial 
case demonstrates the effectiveness and superiority of the algorithm.  

1. Introduction 
In the actual industrial production process, due to the complexity of the production process, the 

measuring environment's degradation, the expensive measuring instruments, and the lagging of the 
measuring time, the real-time monitoring of product quality appear very difficult [1]-[3]. With the 
development of artificial intelligence and database technology, data-driven soft sensor technology has 
attracted extensive attention. Unlike the soft sensor technology based on mechanism analysis, the data-
driven method has a low requirement for prior knowledge, and the modeling cost is also lower. It can 
even consider the impact of noise in the data acquisition process, thus significantly increasing the 
method's robustness, which is lacking in the traditional modeling method.  

The essence of the soft sensor is a regression problem. The simplest regression method is the least-
squares (LS) [8] method, which establishes the relationship between multiple measurement variables 
X and one test variable y. The least-square has a straightforward form and can be easily solved 
analytically. However, LS has the problem of matrix inversion. This method will fail when collinearity 
exists between variables X. Therefore, some scholars have added the identity matrix to the correlation 
matrix to solve the collinearity problem is called ridge regression (RR) [9]. In an industrial process, 
not every variable collected is useful for the soft sensor. The introduction of too many variables 
sometimes brings about noise and even reduces the soft sensor model precision. Therefore, modeling 
methods based on latent variables are widely studied. Principal component regression (PCR) is a 
typical latent variable modeling method. It first uses principal component analysis (PCA) to extract 
the latent variables with large variance, representing most of the data's fluctuation information. The 
latent variables with the most significant fluctuation are selected to establish a relationship with the 
test variables. Recently, slow feature analysis (SFA) has attracted many scholars [10], which extracts 
the latent variables that change slowly in the variables for soft measurement. Generally speaking, the 
latent variables that change slowly can be considered the essential information in the process, while 
the latent variable that changes quickly can be regarded as noise. 

However, in the actual industrial process, there is often more than one variable to be tested. The 
methods above, including LS, PCR, and SFA, only establish the relationship between multiple input 
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variables and one output variable but ignore the correlation between multiple output variables. To 
solve this problem, partial least squares (PLS) [3] are proposed and widely explored. Partial least 
squares regression reduces predictive variables to a smaller set of unrelated components and performs 
least squares regression on those components rather than on the original data. PLS regression is 
instrumental when the predictive variables are highly collinear or when the predictive variables are 
more than the observed values, and the standard error in coefficients produced by ordinary least square 
regression is high. Unlike multiple regressions, PLS does not assume that the predictive variables are 
fixed, which means that the measurement of predictive variables may have errors, making the PLS 
measurement more uncertain. 

However, most traditional modeling methods assume that the data is distributed in a mode. 
Therefore, their application in industrial production is minimal. Due to the switching of working 
conditions, process transformation, or different loads, the correlation between process variables is not 
to maintain the original model but to change in a large or small way. This problem, known as the 
multimode soft sensor, cannot be solved using the methods mentioned above. Cheng et al. applied just-
in-time learning (JITL) to deal with the multimode problem [4]. Wang et al. classified the models from 
a probability distribution, thus realizing a multimodal soft sensor [5]. A k nearest neighbor (KNN) 
based Fault detection and diagnosis method is developed by Song et al. for the multimode process [6]. 
However, KNN only uses the Euclidian distance between samples to measure the similarity of models. 
In some approaches, the higher-dimensional data may be manifold distributed. In other words, 
Euclidean proximity does not mean that the samples are similar. According to the concept of manifold 
learning, higher-dimensional data can be embedded in lower-dimensional Spaces. t-Distributed 
Stochastic Neighbor Embedding (t-SNE) [7] is a typical manifold learning method. Manifold learning 
can be used to embed high-dimensional data into low-dimensional space, thus mining deeper 
relationships between variables. 

 In this paper, a multimode soft sensor method based on manifold learning and PLS is proposed. 
First, t-SNE is used to project high-dimensional data into low-dimensional space to mine potential 
connections between samples. Secondly, KNN is applied to search for specimens of different clusters, 
and the samples are divided into different modes. Finally, PLS is developed to model each mode and 
establish the relationship between the process data and the output variables.  

 The rest of the article is arranged as follows. t-SNE and PLS are introduced in section 2. The 
methods proposed are described in detail in section 3. In section 4, we verify the validity of the 
algorithm through a three-phase flow experiment. In the last section, some conclusions are drawn. 

2. Related work 
2.1 t-SNE  

t-SNE is a nonlinear manifold dimensionality reduction algorithm for high-dimensional data. This 
method converts the distance to probability distribution by using Gaussian distribution in high-
dimensional space and t-distribution in low-dimensional space to avoid the crowding problem caused 
by SNE. 

In the SNE algorithm, |j ip  and j|iq  represent conditional probability， x i 、 jx 、 iy  and jy  
illustrate the similarity adjacent data points, and the conditional probability |j ip  conforms to the 
Gaussian probability distribution. 
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i j||x -x ||  represents the square of the distance between ix  and jx  of the adjacent point 
and iσ  is the variance of a Gaussian function centered on the data point ix . To obtain the optimal 

110



  

 

 

simulation point in the low-dimensional space, the K-L distance between |p j i  and |q j i  should be 
minimized. 

Cost function C is expressed as 
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Where iy is the minimum gradient descent value in a low-dimensional space. 
t-SNE replaces the high-dimensional spatial data conditional probability distribution change to the 

joint probability distribution. |p j i represents the high-dimensional data points and |q j i  illustrates the 
low-dimensional spatial data points. We define p ij and q ij as 
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Where ijq  means the similarity of two points. The new cost function C is expressed as 
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Which is equivalent to the joint probability distribution P and Q. 

2.2 Partial least squares 
PLS is a model based on Global forecast, which constructs the most extensive covariance matrix 

between the latent variables in the process variable X and the quality data. Thus, the mapping of 
process variable X to response variable Y can be realized. Here, X is the process variable, Y is the 
quality variable, n is the number of samples, P is the number of process variables, p is the number of 
process variables, and L is the number of quality variables. PLS contains the relationship between two 
types of data, including external relationship and internal relationship. 
The external relationship is expressed as 
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Where T, P, and E are the score, load, and residual matrix of X, respectively, Q and F respectively 
represent the loading matrix and the residual matrix of Y, and W is the weight coefficient matrix. 
It also requires an internal relationship between T and U, which is written as  
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Where Y is the predicted value of X, and B is the regression coefficient 

3. Method 
3.1 Motivation 

Due to the complexity of the production process and the harsh measurement environment, the 
process data has high dimension and redundancy characteristics. To accurately monitor the working 
process under different conditions, the process data is generally divided into different modes. 
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Therefore, the multimode strategy has been widely used in industrial process monitoring. The 
multimodal problem's research emphasis is how to classify the data with different characteristics and 
establish the model reasonably. Traditional clustering methods, such as K-means, only consider the 
Euclidean distance between data. Due to the complexity of the process data, when the data is 
distributed in a manifold space, Euclidean distance cannot describe the data's length correctly. In the 
description of The Euclide distance, each dimension's effect on the result is the same, without 
considering the intrinsic structural characteristics between the sample data. Manifold learning has 
attracted extensive attention in recent years. By manifold learning, high-dimensional data can be 
mapped to low-dimensional, and the local structure among the data is preserved, which explores the 
characteristics among the data. Besides, the influence of process data noise is deleted, and a more 
effective partition effect can be obtained, which improves the modeling accuracy. 

3.2 The proposed model 
 Due to the switching of working conditions and the change of products in the actual industry, the 

industrial process often presents typical multimodal characteristics. Besides, the relationship between 
variables is not only linear but also nonlinear. Considering the data's multimodal and nonlinear 
features, it is difficult to obtain more accurate results using traditional linear methods. Therefore, it is 
reasonable to divide the data into different modes and build a model for each mode. Since local data 
variables' properties are similar, the simple linear model can be applied to analyze them. A multimodal 
soft sensor method is proposed in this work, which combines t-SNE and partial least squares (PLS). 
The detailed steps are given as follows.  

 Step 1: Dimension reduction. Standard dimensional reduction algorithms do not consider the 
manifold structure between data, such as PCA. However, from the perspective of manifold learning, 
the observed data is mapped from a low-dimensional manifold to a high-dimensional space. Due to 
the limitation of the data's internal characteristics, some data in higher dimensions will generate 
redundancy on the dimension. In fact, only the smaller size can be uniquely represented. Therefore, in 
this paper, we use the t-SNE, a typical manifold learning method, to reduce the data's dimension. Given 
the data set 1{ , , }NX x x=  , where N is the number of samples, the t-SNE is adopted on the data. 
Finally, the low-dimensional features 1{ , , }NH h h=  are obtained. 

 Step 2: Data clustering. Clustering algorithms are applied to these low dimensional features to 
divided process data into different modes. The data characteristics in each mode are similar, but the 
data characteristics in other methods are quite different. K-means [11] is used here to cluster the 

process data. First, k centers are randomly selected for the input feature set 1{ , , }NX x x=  . Secondly, 
the other data set objects into the collection where the central point is located. Thirdly, calculate the 
new cluster center. Loop the second and third steps until the end condition is met. Finally, the process 
data are divided into C clusters. The kth collection is denoted as 1{ , , }k k k NX x x=  , and the 
corresponding measurements are represented as 1{ , , }k k k NY y y=  . 

 Step 3: Soft sensor modeling. In this step, we establish a PLS model for each model. Since each 
mode's data characteristics are relatively similar, linear models can be used to analyze the data. PLS 
considers the coupling relationship between multiple input variables and multiple output variables 
simultaneously, improving prediction accuracy. And this is a linear model with low computational 
complexity. For the kth mode, the mathematical expression is as follows. 
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 Step 4: Online application. For online application, when the new sample newX  arrives, calculate 
the distance between the current sample and the data center of each mode to determine the 
corresponding mode, which is expressed as  

2|| ||k new k centerD X X −= −                           
⑻

 
The corresponding modes are then used to predict the current value. 

4. Section 4 
4.1 Description of three-phase flow facility 

The data in this paper are from the three-phase stream equipment of Cranfield University. The 
purpose of this equipment is to study the effect of multiphase flow supply on small industrial 
equipment. The operation process can be roughly described as the oil, water, and gas storage tank of 
the unit provides oil, water, gas, single-phase or multiphase flowing substances to the equipment. 
When the reaction is over, they are returned to the tank after being treated by the equipment. 

In this article, the sampling interval for all data is 1 second. Three-phase separators are always 
pressurized to 0.1 MPa. We collected three data sets of operating conditions (T1, T2, and T3), among 
which the changes of water with air are shown in Table 1. 

Table 1. List of process variables used in this study 

Air flowrate(m³/s) 0.0208m³/s 0.0278m³/s 0.0347m³/s 0.0417m³/s 
Water flowrate(kg/s) 0.5 1 2 3.5 

 
Fig. 1. The sketch of the three-phase flow facility. 

The modeling data used in this paper are 19 different input process variables, as shown in Table 2, 
and the prediction variables are shown in Table 3 with four other variables. In this paper, MAPE is 
used to measure the relative errors between the average test value and the test set's real value. 
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Table 2 List of process variables used in this study 

Variable nr Location Measured magnitude Unit 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

PT312 
PT408 
PT403 
FT305 
FT104 
FT407 
LI405 
FT406 
FT407 
FT406 
FT104 
FT407 
FT406 
FT104 
LI504 
VC501 
VC302 
VC101 

PO1 

Air delivery pressure 
Diff. pressure (PT401-PT408) 

Differential pressure over VC404 
Flow rate input air 

Flow rate input water 
Flow rate top riser 
Level top separator 

Flow rate top separator output 
Density top riser 

Density top separator output 
Density water input 

Temperature top riser 
Temperature top separator output 

Temperature water input 
Level gas-liquid 3 phase separator 

Position of valve VC501 
Position of valve VC302 
Position of valve VC101 

Water pump current 

MPa 
MPa 
MPa 

Sm3/s 
kg/s 
kg/s 
m 

kg/s 
Kg/m³ 
Kg/m³ 
Kg/m³ 
℃ 
℃ 
℃ 
% 
% 
% 
% 
A 

Table 3. List of process variables predicted in this study 

Variable nr Location Measured magnitude Unit 
1 
2 

PT408 
PT501 

Pressure in top of the riser 
Pressure in 3 phase separator 

MPa 
MPa 

4.2 Experiment 
In this section, the proposed algorithm's effectiveness and superiority are verified by a three-phase 

flow process. We first study the internal structural characteristics of the data. However, high-
dimensional data is not easy to be presented. To improve the expression ability of data and reduce the 
training complexity by t-SNE. The data are mapped from the higher dimension to the three dimensions, 
which is shown in Fig. 2.  

 
Fig. 2. A low-dimensional structure of data. 
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 To illustrate the advantages of manifold dimensionality reduction, we compare the multimodal 
method based on PCA (Method 2) and the multimodal algorithm without dimensionality reduction 
(Method 3). After that, the PLS model is established for each mode, and the values of the three process 
variables are predicted and analyzed. The results are shown in Table 5. 
 

Table 5. Forecast result 

Dimension reduction algorithm The proposed method Method 2 Method 3 
Pressure in top of the riser 

Pressure in 3 phase separator 
-0.0571 
0.0773 

0.8337 
0.1646 

-3.2227 
-14.7879 

 From the result, we can see that the manifold dimensionality reduction has a better performance, 
which presents the various structure of data. Besides, Method 2 has a more accurate result than Method 
3. It illustrates that dimensionality reduction is meaningful for complex high-dimensional process data. 
The predictions of the three variables are shown in Fig. 3. The effect of clustering is shown in Fig. 4. 

 
Fig. 3. The predictions of three variables. 

 
Fig. 4. The result of clustering 

5. Conclusion 
In this paper, a multimodal partial least squares method based on manifold learning is proposed to 

measure industrial processes' key variables, which deals with the multimodal characteristics. The 
manifold structure of process data is reflected by manifold learning, reavealing the essential 
characteristics between process data. It also provides the basis for mode division and identification. In 
each mode, a PLS model is established to eatract the latent features and measure the key process 
variables. However, manifold learning assumes that the data are distributed in the same manifold, 
which reduces the accuracy of the experiment. In the future work, the multi-manifold learning method 
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can be considered to deal with the multi-modal characteristics to achieve a more accurate pattern 
division 
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